Chronic NMDA receptor blockade from birth increases the sprouting capacity of ipsilateral retinocollicular axons without disrupting their early segregation.

نویسندگان

  • M T Colonnese
  • M Constantine-Paton
چکیده

We have investigated the role of the NMDA glutamate receptor (NMDAR) in the genesis and regulation of structural plasticity during synaptogenesis in the visual layers of the rat superior colliculus (sSC). In this neuropil, three projections compete for synaptic space during development. By fluorescently labeling the projections of both eyes and imaging them with confocal microscopy, we can quantify the sprouting of the ipsilateral retinal projection that follows removal of a portion of the contralateral retinal and/or corticocollicular projection. Using these techniques we have studied the effects of NMDAR blockade under different levels of competition. NMDARs were chronically blocked from birth [postnatal day 0 (P0)] by suspending the competitive antagonist 2-amino-5-phosphonopentanoic acid in the slow release plastic Elvax, a slab of which was implanted over the sSC. Such treatment alone does not impair the normal segregation of the retinal projections. However, if sprouting of the ipsilateral projection is initiated with a small contralateral retinal lesion at P6, this sprouting can be further increased by blocking NMDARs from birth. Sprouting of the ipsilateral retinal projection is also induced by retinal lesions made at P10/P11, but NMDAR blockade does not augment the sprouting induced by this later lesion. However, when combined with simultaneous ablation of the ipsilateral visual cortex, P10/P11 lesions show increased sprouting after NMDAR blockade. These data indicate that P0 NMDAR blockade does not eliminate synaptic competition in the sSC. Instead, early elimination of NMDAR function appears to facilitate sprouting that is gated in a stepwise manner by the other visual afferents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NMDA receptor currents suppress synapse formation on sprouting axons in vivo.

NMDA receptors (NMDARs) play an important role in the structural maintenance and functional strength of synapses. The causal relationship between these anatomical and functional roles is poorly defined. Using quantitative confocal microscopy, synaptic vesicle immunoreactivity, and differential label of retinal projections, we measured axon volume and synapse density along ipsilateral retinal ax...

متن کامل

Pattern formation by retinal afferents in the ferret lateral geniculate nucleus: developmental segregation and the role of N-methyl-D-aspartate receptors.

The projection from the retina to the lateral geniculate nucleus (LGN) in ferrets segregates during development into eye-specific layers and ON/OFF sublayers. The projection pattern and the morphology of single axons was examined at several postnatal ages. The axons progress from a simple, sparsely branched morphology at birth to crude arbors at postnatal day 7 (P7). At P14-P15, axons have term...

متن کامل

NM DA Receptors: Neural Map Designers and Refiners?

Sensory maps are created as a result of the precise architecture of neurons and their projections within the brain. The formation of these maps during development requires the appropriate positioning of neuronal axons and dendrites. Glutamate receptors of the N-methyl-Daspartate (NMDA) class have been shown to play a clear role in neuronal plasticity that underlies learning and memory, their ro...

متن کامل

Ten-m3 Is Required for the Development of Topography in the Ipsilateral Retinocollicular Pathway

BACKGROUND The alignment of ipsilaterally and contralaterally projecting retinal axons that view the same part of visual space is fundamental to binocular vision. While much progress has been made regarding the mechanisms which regulate contralateral topography, very little is known of the mechanisms which regulate the mapping of ipsilateral axons such that they align with their contralateral c...

متن کامل

Retina-driven dephosphorylation of the NR2A subunit correlates with faster NMDA receptor kinetics at developing retinocollicular synapses.

We describe a homeostatic mechanism that limits NMDA receptor currents in response to early light activation of a developing visual pathway. During the second postnatal week of rodent retinocollicular development, the Ca2+-activated phosphatase calcineurin (CaN) mediates a rapid, activity-induced shortening in the decay time of NMDA receptor (NMDAR) currents. We show that protein kinase A acts ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 5  شماره 

صفحات  -

تاریخ انتشار 2001